
PROMASI — A PROject MAnagement SImulator

Nicholaos Petalidis
Voyager Software

Thessaloniki, Greece
petalidis@promasi.gr

Gregory Gregoriadis
Voyager Software

Thessaloniki, Greece
grigoriadis@promasi.gr

Alexandros Theodoridis
Informatics & Communications Dept (ICD)

TEI of Serres, Greece
theodoridis@promasi.gr

Antonios Chronakis
ICD

TEI of Serres, Greece
chronakis@promasi.gr

Abstract—This paper presents work-in-progress on a soft-
ware project management simulator suitable for educating
and training prospective software project managers. The work
presents the design of a modular architecture for the simulator
as well as a modeling language for representing possible
management scenarios. It finally reports on issues one has
to bear in mind when considering the development of such
systems.

Keywords-software engineering, software engineering educa-
tion, project management simulation

I. INTRODUCTION

Software engineering is generally considered a difficult
subject to teach. Many authors have mentioned these dif-
ficulties (e.g. [1], [2]) and the software industry has com-
plained several times that the level of education of future
software engineers is not satisfactory [3], [4], [5].

An aspect of software engineering education that presents
additional hurdles is that of project management because
undergraduate students and other junior programmers fre-
quently lack the level of experience required to grasp the
importance of several project management concepts. Fur-
thermore, the size of projects that can be exercised in a single
semester does not justify many of the project management
steps taught in the classroom while students more often than
not will put emphasis on the technical aspects of the project
and not on the required managerial procedures.

One approach used to overcome these problems is by use
of simulation games in software project management courses
(e.g. [6]). Simulation allows the student to see how realistic
projects evolve and how his/her actions affect the outcome
of the project.

To this end, this paper presents the design of such a
system, i.e. a project management simulator (PROMASI-
http://www.promasi.gr) that should allow students to actively
test their skills in managing the development of a software
product exercising various actions through simulation. One
of the novel approaches of the solution proposed here is the
separation of the various constituent parts of the simulator
through a modular architecture allowing third parties to
provide their own add-ons. We also present the development
of extensions to the system dynamics modeling language [7]
that will allow the construction of simulation models that can
easily work with the rest of the PROMASI framework.

II. RELATED WORK

A number of simulators exist for the purposes of predic-
tion or postmortem analysis of projects, but only few project
management simulators have been developed for educational
purposes.

Some of them are in essence system dynamic [7] models
with limited interactivity, as in [6]. In these, the student sees
a number of controls, in the form of buttons, sliders etc, that
directly affect a number of project variables. Changing them,
the system dynamics simulator generates new output and the
student sees, in the form of graphs, the effect of his actions.

One problem with this approach is the reduced level of
interactivity, since the students cannot easily change their
choices after they receive feedback from the project. Another
problem is that students do not have to go through the
process of discovering the variables affecting the outcome,
since these are presented directly to them. Another drawback
is that the simulation model is tightly coupled to the user
interface. This means that in order to simulate different
scenarios or different parts of a project, it is necessary to
write the simulator from scratch with a new user interface
that takes account of any changes. Finally, simulators of this
kind have too few of the characteristics that could classify
them as “engaging” or captivating and that makes their
adoption by the student community more difficult.

On the other hand, a small number of software project
management simulators that improve the student experience
with higher interactivity levels and decouple the user inter-
face from the associated model are present.

SESAM [8] is one of the first simulators developed for
educational purposes. It allows the definition of a static
model that describes the attributes of the people working on
a project, plus any related artifacts. The dynamic behavior
of people and documents, including any influences from one
to the other, is defined by the dynamic model. It is assumed
that someone, not necessarily the teacher, will construct the
static and dynamic models in such a way that they reflect
to some extent the reality. In a typical situation then, the
tutor will specify the attributes of the static model and the
student will exercise the model by hiring or firing employees,
talking to employees and the boss and assigning tasks among
other things. SESAM uses its own language that allows the



definition of structures such as documents, persons and so
on, the definition of relations between them and rules that
define the conditions and the effect of allowable actions.

SimSE [9] is another simulator used for software project
management courses. SimSE allows the definition of objects,
actions and rules. An object is considered to be either an
employee or an artifact or a tool or a project or finally
a customer. The actions in a SimSE model represent the
set of activities in which the objects in the simulation can
participate and finally the rules describe the effects and the
conditions for an action to occur. SimSE also uses its own
language similar to that of SESAM. The language allows
objects to be associated with graphics and rules maybe
defined on when an action will trigger the appearance of
a graphic. This way there is a separation between the user
interface and the model and the same interface can be used
with different models.

A rule-based engine with cause and effect rules is also
used in SimVBSE [10] a slightly different simulator with
emphasis on value-based software engineering. The rules are
defined at design time and executed when the student plays.
In a typical scenario the player is informed about various
aspects of the organization he is working in, through a series
of visits to different departments of the company and finally
he is faced with a series of successive scenarios, an objective
and a set of finite choices. After the student makes the choice
he has the option to view a set of tutorials related to the
scenarios he faced.

In all of the previous simulators the basic steps can be
described as follows: construction of a model representing
a particular process, instantiation of the model with specific
values that represent a particular scenario, exercise of the
model by a student who makes decisions at certain stages
of the simulation.

A major difficulty in using these simulators however
is in the construction of the models. Models need to be
realistic, yet of educational value. Their construction is time-
consuming and not something that can be done routinely in
the course of a lecture. The above simulators all have their
own languages but these languages are tightly integrated
with the particular simulator and provide little guidance in
the construction of realistic models. There are of course
several other process modeling languages that can be used
for describing a software development process, e.g. [11],
[12], [13], [14] and ease the construction of a model.
One of the problems of these languages, however, is that
they are either not specific to software engineering or they
are designed for postmortem analysis, or prediction or the
specification of a particular scenario. Hence, they do not
accommodate well the requirement for interactive scenarios
with the user making decisions during the simulation. For
this reason, we believe that they are not suited for use in
an educational game simulation and we could not find any
reported use of them in an educational setting.

III. THE GOALS OF PROMASI

In order to avoid the problems that were presented above,
the PROMASI architecture is based on the following princi-
ples:

• Separation of the game and the model
Decoupling of the user interface from the actual busi-
ness logic is a standard software engineering practice.
Similarly, the simulator must be playable with a variety
of models and thus the interface that the user sees must
be clearly separated from the underlying model.

• Independent modeling language
The modeling language should be considered a separate
part of the simulation game and should be defined
as a separate entity that can be implemented in an
autonomous component. This way the separation of
concerns between the various simulator parts will be
better achieved. Moreover the language should provide
constructs specific for game-playing, i.e. the ability
to define specific actions in the model where either
input is expected or output will be generated. Later
versions of the language should also provide a library of
components that allow the quick creation of educational
models. Such an extra layer is necessary in order to ease
the construction of models. In this respect, we propose
something similar to the language presented in [15],
[16]. Like [15] we propose using system dynamics as
the underlying language for defining a software process.

• Adequate set of models
The construction of models is not generally an easy
task and requires experience and skills that might not be
readily available. One of the reasons, thus, that may be
behind the low adoption rate of simulators in the class,
is that there is simply not enough material to support
a simulation-based software engineering management
course. For this reason, it is critical that any simulator
will come already equipped with a set of models that
can be used in a course that follows generally accepted
curriculum guidelines such as the Software Engineering
2004 volume [17]. Tools that will make the deployment
of the simulator in lab environments easier and allow
instructors to remotely provide assistance and guidance
to students will also make the adoption of simulator-
based training easier.

IV. PROMASI ARCHITECTURE

A. Internals

PROMASI is organized into five layers, as presented in
Figure 1 which implement different functionality and allow
one to easily interchange them with different implementa-
tions. These layers are as follows:

Core The core engine of the simulator is a system
dynamics model [7], [18]. PROMASI extends the
language of system dynamics so that interactive



�� �����

�	���


����������


���

Figure 1. PROMASI’s layers

simulation can take place by introducing events
that can be communicated back and forth to the
model. PROMASI’s version of system dynamics is
called PSD (PROMASI System Dynamics) and is
briefly described below.

Communication
Implements the API that provides input values to
the core and sends the output values of the Core.
The Core and the Communication layer can be
used as the basis for any simulation game.

Model
Implements the project management related enti-
ties such as company, project etc.

Shell Implements necessary APIs that allow different
user interfaces to be connected to the simulator and
different play modes (e.g. single user vs multi user)
to be realized. It also provides the communication
layer with any values requested by the model.

UI This layer implements the user interface. The cur-
rent implementation simulates the desktop environ-
ment with appropriate tools, such as email, Gantt
planner etc that one expects in a project manager’s
workstation.

When a game begins, the clock starts ticking and the
actions of the project manager affect the Core execution,
which in turn responds with appropriate events to the user.
At each tick the Shell instructs the Core to perform a step. At
every step the Core calculates the values of all the variables
and outputs new values. When the Core requires an input
value, it requests that value from the Communication layer
and in turn the Communication layer requests that value
from the Shell. The Core calculates the values and outputs
the values to the Communication layer which forwards them
to the Shell which updates the Model and the User Interface.

B. The modeling language

As mentioned earlier the basic system dynamics modeling
language does not include any constructs for interactive
simulation which is necessary for a playing experience.
System dynamics include constructs for

Stocks

Practically store the state of all interesting variables
in the model (e.g. how much of the requirements
is completed)

Flows
Move information from one stock to another (e.g.
the analysis flow may reduce requirement and
increase analysis artifacts)

Variables
Used whenever a constant is needed or a particular
value needs to be temporarily stored.

Each stock is transformed by one or more flows (and
vice versa), through explicitly defined functions (known as
calculated functions in PSD). For example, the following:

requirementst = requirementst=0 −
∫ t

0
analysis flow dt

defines how the requirement artifacts are transformed
through the analysis flow. PROMASI system dynamics
language supports most of the usual functions, constants,
graphs, lookups etc found in such models.

In addition to the above constructs though, that are present
in all system dynamic models, it also provides with extra
language constructs that help realize the interaction with the
other layers:

Output
A construct with this characterization instructs the
Core to send its value to the communication layer
after every calculation

Events
Every system dynamic object can have various
events that are triggered when the specified con-
ditions are met. When an event is triggered the
Communication layer sends event information to
the Shell. Each event looks like a typical function.
If its value is calculated to be a number higher or
equal to 1 then the event is triggered and it is sent
to the upper layers. Each event can be triggered
only once.

External
A construct with this annotation instructs the Core
to request the value for this variable from the
communication layer.

Figure 2 shows a model drawn in the PROMASI editor.
The structure shows how a bug fix proceeds: the amount
of errors discovered (errorDiscovery312) depends on
the team characteristics and the productivity of the individual
working on the error (averageTeamPlayerTest312,
averageTesterTest312). These are values that are
calculated based on other variables whose value is provided
by the Shell (External variables).

The graphical structure has an XML equivalent that looks
as follows in the case of bug312Progress:

<void property="events">
<void method="add">



sumTeamplayerTest312

External

workingEmployeesTest312

External

sumTesterTest312

External

workAccomplishment312

Calculated

averageTeamplayerTest312

Calculated

averageTesterTest312

Calculated

workDone312

Calculated

worktoDo312

Calculated

errorDiscovery312

Calculated

Bug312Progress

Calculated

Figure 2. A PROMASI system model

<object class="Event">
<void property="equation">
<object class="CalculatedEquation">
...(truncated for brevity)

<void property="equationString">
<string>
if(bug312Progress>=1,1,0)

</string>
</void>

...(truncated for brevity)

The XML shows for example that bug312Progress
has an associated event that signals whenever progress goes
over 100%.

C. Current status

The current version supports a single player score mode.
In this mode the user plays alone and his actions are graded
against an ideal score. The user plays a story which contains
a series of projects that the user must complete. Stories are
defined by the instructor in the form of XML documents.
After each project concludes the user gets a score. The score
is defined in the PSD model so the instructor can decide on
the criteria that the score will be based on.

In a typical game scenario, after the user logs in, he selects
a story from the set of stories that the instructor provided.
After that he manages the project through typical project
management tools such as Gantt charts and (obviously)
email. Email notifications are generated by various events
such as the initial project assignment or a particular task
completion and they depend on what the underlying model
has defined. Similar to typical project situations the user is
given a specific budget and date to which the project must
adhere. Figure 3 shows a screenshot of the typical situation
the user finds himself into. In this screenshot, the email
application is shown, where the user is informed about the
project that was assigned to him (Welcome to UBM...). The
marketplace is also shown where the user can choose from
the available employees, having seen a brief bio of each
one (Robert Mash...). Finally, the Gantt tool is shown where
employee Robert Mash has been assigned the fix for Bug312
and is given one day to complete it.

After the user concludes the project assignment the clock
starts ticking until the next event takes place. The type of

Figure 3. Screenshot of the PROMASI desktop

events that can take place depend on the complexity of the
underlying model. In the end the user is shown a score as
well as various important metrics of the project (for example
the actual versus the originally assigned budget).

V. PROBLEMS UNCOVERED AND NEXT STEPS

The first evolution of the project has identified a number
of areas that need special care when designing a simulator
of this kind. Therefore, the next version of the project
is scheduled to address these problems that are briefly
described below:

A. Construction of realistic models

To be able to use the simulator as an efficient educational
tool, proper models need to be created that give the user the
impression of reality when dealing with various situations.
At the moment, however, only simple proof-of-concept
models have been developed. Work however is underway to
provide models that take care of complex software project
manager scenarios in situations where the user can exercise
various alternatives. These alternatives include situations
such as deciding on the number, duration and structure of
iterations, deciding on whether they should hire or not more
people etc.

B. Tools for model creation

Models should be constructed by the instructors but such
models are not easy to create and may become quite com-
plex. Thus tools are needed that help manage this complexity
and allow the instructor to easily visualize the model,
break it into sub-models and add or remove components.
Furthermore, such model construction should be done in an
integrated development environment that provides with other
facilities as well such as source control and refactoring. To
this end a new editor is being developed as an Eclipse plug-
in so that the instructor will be able to build models in a
familiar development environment.



C. Multi-user support

At the moment PROMASI only allows a single user to
manage a single company. The user basically plays against
an ideal market place which is simulated by the Core. This
is not necessarily bad, but it has two drawbacks:

• Students need to be properly stimulated in order to
actively engage in a course. Even though a game might
be interesting on its own, competing against fellow
students is certainly more interesting that competing
against a machine

• Project assessment in the real world differs from theory.
A project in theory might be a failure but in the real
world might still be a success simply by the fact that
it is better than its competitors.

For the above reasons a new line of development has been
created that allows the simulator to be played concurrently
by more than one user. In this setting every player manages
his own company and hires the employees from a shared
market place. Thus, players also compete against each
other in order to hire the best employees. Every company
undertakes the same projects and each company competes
against the other in the market place.

In order to adopt the changes described above, the next
version of PROMASI implements a standard client/server
architecture where the Core layer executes on the server and
communicates the simulation results whenever required to
the clients.

VI. CONCLUSIONS

Simulators can be used to teach management concepts
which would otherwise be difficult to show to undergraduate
students. The design of such a simulator was presented
here that provides with a modular architecture for easy cus-
tomization and a modeling language suitable for interactive
models. The first evolution of the project uncovered a series
of issues that one needs to consider when designing such
tools, the more important of which we believe is the creation
of realistic models and the support for tools that will allow
such a thing. PROMASI is addressing these problems in its
next version. The interested reader can find more information
on how to download the source or participate in the project,
at the project’s web site: http://www.promasi.gr

REFERENCES

[1] D. Evans, “Teaching software engineering using lightweight
analysis,” in NSF CCLI Proposal, 2001.

[2] D. Deveaux, R. Fleurquin, and P. Frison, “Software engi-
neering teaching: a “Docware” approach,” SIGCSE Bulletin,
vol. 31, no. 3, pp. 163–166, 1999.

[3] M. Jazayeri, “The education of a software engineer,” in
Proceedings of the 19th IEEE International Conference on
automated software engineering. IEEE Computer Society,
2004, pp. xviii–xxvii.

[4] D. Callahan and B. Pedigo, “Educating experienced IT
proffessionals by addressing industry’s needs,” IEEE Soft-
ware, vol. 19, no. 5, pp. 57–62, Sep./Oct. 2002.

[5] R. Conn, “Developing software engineers at the C-130J
software factory,” IEEE Software, vol. 19, no. 5, pp. 25–29,
Sep/Oct 2002.

[6] D. Rodrı́guez, M. Ángel Sicilia, J. J. Cuadrado-Gallego, and
D. Pfahl, “e-Learning in project management using simulation
models: A case study based on the replication of an experi-
ment,” IEEE Transactions on Education, vol. 49, no. 4, pp.
451–463, 2006.

[7] J. Forrester, Industrial Dynamics. MIT Press, 1961.

[8] M. Deininger and K. Schneider, “Teaching software project
management by simulation-experiences with a comprehensive
model,” in Proceedings of the 7th SEI CSEE Conference on
Software Engineering Education. London, UK: Springer-
Verlag, 1994, pp. 227–242.

[9] E. Navarro, “SimSE: A software engineering simulation envi-
ronment for software process education,” Ph.D. dissertation,
School of Information and Computer Sciences, University of
California, Irvine, 2006.

[10] A. Jain and B. Boehm, “SimVBSE: Developing a game
for value-based software engineering,” in CSEET ’06: Pro-
ceedings of the 19th Conference on Software Engineering
Education & Training, 2006, pp. 103–114.

[11] W. Emmerich and V. Gruhn, “FUNSOFT nets: A Petri-Net
based software process modeling language,” in Proceedings
of the Sixth International Workshop on Software Specification
and Design, 1991, pp. 175–184.

[12] S. Dami, J. Estublier, and M. Amiour, “APEL: A graphical
yet executable formalism for process modelling,” Automated
Software Engineering, vol. 5, pp. 61–96, 1998.

[13] A. G. Cass, B. S. Lerner, S. M. S. Jr., E. K. McCall, A. Wise,
and L. J. Osterweil, “Little-JIL/Juliette: a process defini-
tion language and interpreter,” in ICSE ’00: Proceedings of
the 22nd international conference on Software Engineering,
2000, pp. 754–757.

[14] OASIS, Web Services Business Process Execution Language
Version 2.0. OASIS, 2007.

[15] M. D. O. Barros, C. M. L. Werner, and G. H. Travassos, “A
system dynamics metamodel for software process modeling,”
Software Process: Improvement and Practice, vol. 7, no. 3–4,
pp. 161–172, 2002.

[16] M. de O. Barros, A. R. Dantas, G. O. Veronese, and C. M. L.
Werner, “Model-driven game development: experience and
model enhancements in software project management educa-
tion,” Software Process: Improvement and Practice, vol. 11,
no. 4, pp. 411–421, 2006.

[17] I. C. Society, “Software engineering 2004,” 2004, http://sites.
computer.org/ccse/SE2004Volume.pdf.

[18] R. J. Madachy, Software Process Dynamics. IEEE Press,
2008.


